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A low-discrepancy cubic variant of �-Mn is presented exhibiting local octagonal

symmetry upon projection along any of the three mutually perpendicular h100i

axes. Ideal structural parameters are derived to be xð8cÞ ¼ ð2�
ffiffiffi
2
p
Þ
�

16 and

yð12dÞ ¼ 1
�
ð4

ffiffiffi
2
p
Þ for the P4132 enantiomorph. A comparison of the actual

and ideal structure models of �-Mn is made in terms of the newly devised

concept of geometrical discrepancy maps. Two-dimensional maps of both the

geometrical star discrepancy D* and the minimal interatomic distance dmin are

calculated over the combined structural parameter range 0 � xð8cÞ< 1=8 and

1=8 � yð12dÞ< 1=4 of generalized �-Mn type structures, showing that the

‘octagonal’ variant of �-Mn is almost optimal in terms of globally minimizing D*

while at the same time globally maximizing dmin. Geometrical discrepancy maps

combine predictive and discriminatory powers to appear useful within a wide

range of structural chemistry studies.

1. Crystal structure of b-Mn

Among the metallic elements, manganese is notable for the

occurrence of four allotropes of which two, the �- and the �-

modification, exhibit exceptional and comparatively complex

crystal structures.

The crystal structure of �-Mn (Pearson symbol cI58), stable

at ambient conditions, is best described via a body-centred

cubic packing of a nested polyhedral cluster composed of 29

atoms occupying a central site followed by a tetrahedral,

truncated tetrahedral, and cuboctahedral shell (Bradley &

Thewlis, 1927).

Above 1000 K and up to 1368 K, �-Mn (cP20) is the stable

form of the element whose structure turns out to be of a more

idiosyncratic nature resulting in a variety of structural

descriptions since its first determination by Preston (1928).

A single-crystal X-ray diffraction study by Shoemaker et al.

(1978) confirmed the earlier results of �-Mn crystallizing in

one of the chiral cubic space groups P4132 and P4332 (No. 213

and 212), a = 6.315 (2) Å, with 20 atoms in the primitive unit

cell. One set of Mn atoms occupies the Wyckoff site 8c (x, x, x)

with xMn1 = 0.06361 (10), while the other set of Mn atoms is

located at 12d (1=8; y; yþ 1=4) with yMn2 = 0.20224 (11)

(structure model SHO).

Several descriptions of the structure of �-Mn have been

reported: namely, (i) in terms of coordination polyhedra

(Kripyakevich, 1960), (ii) as a body-centred cubic of garnet

type with polyhedral rod packing (O’Keeffe & Andersson,

1977) and (iii) as a primitive cubic with rectilinear rod packing

of tetrahelices (polyhedral helices of face-sharing tetrahedra;

Nyman et al., 1991; O’Keeffe, 1992). A graphical comparison

of these structure descriptions and a discussion of their merits

is given by Karlsen et al. (1992). In essence, �-Mn represents a

singular case of a tetrahedrally close-packed structure besides

the numerous well known Frank–Kasper phases.

A phase composed of domains of the �-Mn structure was

identified as resulting from a molecular dynamics simulation

aimed at the study of the crystallization of a monatomic liquid

and subsequently used for the development of a structural

model for axial quasicrystals with octagonal symmetry

(Elenius et al., 2009).1 This relation of �-Mn to octagonal

quasicrystals, as their only known crystalline approximant to

date, was established earlier by Kuo and co-workers (Cao et

al., 1988, 1989; Kuo, 1990; Mai et al., 1989; Wang et al., 1987;

Wang & Kuo, 1989, 1990) and further explored by the

Hovmöller group (Huang & Hovmöller, 1991; Jiang et al.,

1995). Octagonal quasicrystals are scarcely known in

substance and as a result of the lack of suitable specimens

scant attention has been given to their structure so far, apart

from in electron microscopy studies (see Steurer & Deloudi,

2009 for a survey).

A cut-and-project scheme yielding either the octagonal

quasilattice or the corresponding cubic lattice of �-Mn

was reported by Li & Cheng (1996). Lidin & Fredrickson

(2012), too, gave a structural description in terms of a higher-

dimensional construction (however, of its own group-

theoretical flavour), emphasizing the presence of a triplet of

mutually perpendicular eightfold screw axes in six dimensions

in order to obtain the �-Mn structure upon projection to three

dimensions (as the 85 or 83 screw axes present in the higher-

1 Curiously, a thermodynamic Monte Carlo simulation, solely based on an
entropy maximization argument suggesting effective many-body directional
forces, showed the self-assembly of regular pentagon–dodecahedra into a
�-Mn-type structure (Damasceno et al., 2012).
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dimensional enantiomorphs contain the 41 or 43 screw axes of

the lower-dimensional ones, respectively).

In another approach �-Mn was described as a three-

dimensional permutation structure (Hornfeck, 2012), while

recently a relation was given describing its structure as a

defective variant of the cubic Laves phase MgCu2 (Xie et al.,

2013).

Aside from the mere description of its crystal structure,

�-Mn was likewise the subject of state-of-the-art studies

exploring its peculiar magnetism resulting from the structure’s

intrinsic chirality (Hafner & Hobbs, 2003; Paddison et al.,

2013).

2. Structure variant with local octagonal symmetry

The low-discrepancy structure variant of �-Mn exhibiting local

octagonal symmetry upon projection (structure model OCT)

was found during the calculation of a geometric discrepancy

map for generalized �-Mn structures within a parameter range

restricted to the intervals 0 � x< 1=8 and 1=8 � y< 1=4

(comprising the structural parameters x = 0.06361 and y =

0.20224 of the actual �-Mn structure SHO). Note that here

and in the following, the coordinate designators x and y are

shorthand notation for the structural parameters x(8c) and

y(12d), respectively, where 8c and 12d designate the Wyckoff

positions of the space-group type P4132.

The geometric discrepancy of a point set in a given interval

(here, the unit cell) is a number-theoretic measure of the point

set’s (spatial) uniform distribution, or rather its deviance

thereof, roughly speaking its ‘self-avoiding ability’.

Given a set P ¼ fp1; . . . ; pNg of N points pi ¼ ðxi1; . . . ; xisÞ

in s dimensions, its geometric (global) star discrepancy is

defined as the least upper bound, i.e. the supremum

(Matoušek, 2010):

D�NðP;BÞ ¼ sup
B2B

jP \ Bj

N
� VðBÞ

����
����; ð1Þ

Here, P \ B is the intersection of the point set P with a given

axis-parallel box B ¼ ½0; u1Þ � � � � � ½0; usÞ from the class B of

all boxes anchored at the origin and spanned by a point

ðu1; . . . ; usÞ within the s-dimensional unit cube ½0; 1Þs. There-

fore, jP \ Bj
�

N allocates the number of points falling within

the axis-parallel box in relation to the total number of points,

while VðBÞ gives the content of the axis-parallel box measured

in relation to the content of the unit cube. The absolute value

of the difference in these proportions is the local discrepancy

with respect to the choice of the test box B. In the limit of ideal

uniform distribution, although all but impossible for any finite

case, each box would get exactly its fair share of points as

expected with respect to its volume, which means that the

global discrepancy would drop to zero. Although, by matter of

definition, this would be the best possible value for the

discrepancy (the worst one being unity), the discrepancy is

practically bounded to a markedly smaller subinterval, even

for the most advanced constructions of low-discrepancy point

sets known to date. In fact, establishing general bounds on the

discrepancy, particularly lower ones, only depending on N and

s (up to non-specified constants), is part of current research in

metric number theory.

Questions of uniform distribution or, conversely, irregula-

rities of distribution mainly arise in the context of rather

specific sampling and approximation problems treated in

metric number theory and combinatorics – most often of a

highly multidimensional nature (Bugeaud, 2012; Beck &

Chen, 1987). Discrepany measures then provide a quantitative

way of expressing the approximation error related with

s-dimensional numerical integration problems of the most

general type:

Z
½0;1Þs

f ðxÞ dx �
1

N

XN

n¼1

f ðxnÞ;

with x1; . . . ; xN denoting a set of suitably chosen sampling

points. Colloquially speaking, the nonvanishing discrepancy

represents the intrinsic (categorical) distinction in switching

from a continuous to a discrete description.

These ideas are, however, closely related to more general

views on concepts like order and randomness, simplicity and

complexity (Beck, 2009; Chazelle, 2000). For this reason, it

seems promising to transfer some of the vast knowledge

already accumulated in discrete mathematics to the fields of

structural chemistry and crystallography, respectively. Horn-

feck (2013) gives a preliminary and qualitative exposition with

respect to an application of geometric discrepancy measures in

a structural chemistry context, whereas Hayes (2011; see

also http://bit-player.org/2011/a-slight-discrepancy) portrays

the notion of the (star) discrepancy for a general audience.

The OCT structure is located near the global minimum M1

of this type of equidistribution map (Fig. 1). The �-Mn
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Figure 1
Map of the star discrepancy D� for generalized �-Mn structures. Large
(small) values of D� are highlighted in red (blue). In addition some
intermediate contour lines are highlighted (in steps of 0.02), while a single
dot marks the position of the global minimum of the map. The location of
the SHO and OCT models, in terms of their structural parameters, is
marked by a plus sign + (within the map) and additional, unlabelled ticks
(on the axes).



structure SHO is located near a second deep minimum M2.

Both deep minima are separated via a saddle point S located

at the diagonal line y ¼ �xþ 1=4. Table 1 collects the

numerical data for these special points.

Ideal structural parameters for the OCT model were

derived to

x ¼
2�

ffiffiffi
2
p

16
� 0:03661 and y ¼

1

4
ffiffiffi
2
p � 0:17678; ð2Þ

taking into account the coordinate restrictions for the corre-

sponding Wyckoff sites in P4132 and assuming that the

(projected) nearest and next-nearest neighbour distances,

di;iþ1 and di;iþ2, have to be equal among each other for the

special case of a regular octagon. In both cases, a single

condition can be found relating the x and y structural para-

meters, namely

di;iþ1: y ¼ �ð64x� 8Þ�1; ð3Þ

for the nearest and

di;iþ2: y ¼ ð1=8Þ 128x2
� 32xþ 3

� �1=2
; ð4Þ

for the next-nearest neighbours, respectively (see Appendix

A3 for details of the calculation). Each condition may be

viewed as describing the restrictions imposed on the radial

scaling and azimuthal rotation of two squares of atoms relative

to each other (cf. Fig. 2), only depending on the choice of a

single structural parameter. Combining these conditions fixes

the ideal coordinates in a unique way. Their values are related

by a factor of 2�S, i.e. two times the silver mean �S ¼ 1þ
ffiffiffi
2
p

,

the classical scaling factor for octagonal tilings.

Fig. 2 highlights the slightly inclined regular octagons,

together with an 8 � 8 grid of dashed lines facilitating the

direct comparison of atomic positions between both models.

The vacant origin of the unit cells is marked by a &. Within the

projected structure the barycentres of the regular octagons are

located at ð1=4; 0Þ and ð3=4; 1=2Þ, i.e. at the position of the 41

screw axes, their edge length is ð1=8Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 3

ffiffiffi
2
pp

a, their

circumradius is ð
ffiffiffi
3
p �

8Þ a and their inclination relative to a

cubic h100i axis is given as 	 cos�1ð1
� ffiffiffi

3
p
þ 1

� ffiffiffi
6
p
Þ �

	9:736
.

The OCT model thus established now acts as an ideal

reference to which the SHO model representing the actual

crystal structure of �-Mn can be compared.

In terms of their star discrepancy, the SHO model exhibits a

value that is slightly larger than the corresponding star

discrepancy of the OCT model (D�SHO = 0.1386 > 0.1344 =

D�OCT). This means that the points of the OCT model (or the

atoms in a corresponding crystal structure) are more

uniformly distributed in space than in the �-Mn structure.

This is accompanied by the observation made from the

minimal interatomic distance map shown in Fig. 3(a), that the

minimal distance follows a similar behaviour, since dmin(SHO)

= 2.3635 Å is smaller than dmin(OCT) = 2.4962 Å. Whereas the

SHO structure occupies a rather generic position of the

minimal distance plateau, cf. Figs. 3(a) and 3(b), the OCT

structure coincides quite perfectly (within 	0.0003) with the

global maximum at the triple junction d134. This means that the

octagonal structure maximizes the minimal interatomic

distance (i.e. optimizes the atomic packing), in correspondence

with its excellent spatial equidistribution properties, as

expressed by its comparatively low value of the star discre-

pancy.

Moreover, the shortest Mn1—Mn1 and Mn2—Mn2

distances become equal to another in the OCT structure, a fact

which expresses itself also by the coincidence of equation (4)

with the boundary line y14ðxÞ separating regions one and four

of the minimal distance map [see Fig. 3(b) and Appendix A1].

In the tetrahelix description of the structure (Nyman et al.,

1991), the shortest Mn1—Mn1 and Mn2—Mn2 distances form

opposing edges of the face-sharing tetrahedra, which are

interconnected along the helical axis. Fig. 3(c) depicts finite

patches of two tetrahelices parallel and perpendicular to the

helical axis.

The harmonization of the shortest interatomic distances

continues and culminates in the inclusion of the shortest

Mn1—Mn2 distance, upon reaching the point d134, a triple

junction and the global maximum of the minimal distance

map. Table 2 compares the changes in the interatomic

distances (below d < 3.50 Å) for the SHO, OCT and d134

structures.

Although the change from the SHO structure to the OCT

structure and finally to the d134 one strongly affects most of the

interatomic distances, the average distances hdi within each

coordination shell remain almost constant. The variance of the

distance exhibits more pronounced alterations, however of
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Table 1
Special points of the distance (top) and discrepancy (bottom) maps.

Point xð8cÞ yð12dÞ dmin (Å) D� Special property

d123 0.05445 0.21959 2.4039 0.1455 Triple junction 123
d145 0.05261 0.16157 2.4126 0.1496 Triple junction 145
d134 0.03633 0.17706 2.4978 0.1341 Global maximum
OCT 0.03661 0.17678 2.4962 0.1344 Octagonal variant
M1 0.04269 0.18310 2.4629 0.1302 Global minimum
S 0.05273 0.19727 2.4121 0.1501 Saddle point
M2 0.05982 0.20664 2.3796 0.1311 Local minimum
SHO 0.06361 0.20224 2.3635 0.1386 Shoemaker et al. (1978)

Figure 2
Comparison of the structures of �-Mn (SHO) and its variant with local
octagonal symmetry (OCT) in projection along [001] (�=
 ¼ 8c=12d site).



opposing trend for the Mn1 and Mn2 coordination environ-

ments. Except for these observations the minimal distance

map on its own proves to be comparatively featureless. In

particular, the special values of x and y for the SHO structure

do not mark any notable point on the minimal distance map.

The star discrepancy map, in comparison, combines predictive

(qualitatively, regarding its overall topology and the presence

or absence of minima) as well as discriminatory powers

(quantitatively, regarding the comparison of exact values of

the star discrepancy for distinct structures).

The aforementioned harmonization of the shortest inter-

atomic distances associated with the OCT structure is distinct

from a previous idealization described by O’Keeffe &

Andersson (1977). Their approach aimed at a harmonization

of as many as possible nearest-neighbour distances in order to

create almost regular tetrahedra, yielding ideal parameters:

x ¼
1

9þ
ffiffiffiffiffi
33
p � 0:06782 and y ¼

9�
ffiffiffiffiffi
33
p

16
� 0:20346:

Thus, one may say that their approach aims at the uniform

distribution of atoms with respect to a distance measure (local,

directional, one-dimensional) while ours aims at the same with

respect to a discrepancy measure (global, nondirectional,

three-dimensional), with an inevitable dissimilarity of the

outcome.

Although the OCT structure maintains the space-group

type of �-Mn by a mere matter of construction, we would like

to explicitly state the facts, that by virtue of the cubic

symmetry (i) the local octagonal symmetry is present upon

projection in three mutually perpendicular directions, as it

should be in compliance to the higher-dimensional description

of Lidin & Fredrickson (2012), whereas the octagonal quasi-

crystal is uniaxial, thereby breaking this symmetry, and (ii) the

tetrahelix depicted in Fig. 3(c) is following a 41 helical axis,

since naturally the ideal 85 symmetry is not compatible with a

three-dimensional lattice (see Appendix A3 for a calculation

of the numerical deviation).

One may also compare both models in reciprocal space,

regarding the intensity distribution of their diffraction

patterns. Calculated sections hk0 to hk2 of the SHO and OCT

models are shown in Fig. 4. Here, the presence of 41 screw axes

is made obvious from the observed serial reflection condition

h00 with h = 4n.

Whereas in hk0 (SHO) a strong pseudo-octagonal intensity

distribution can be seen, formed by the 310 reflection and its

equivalents, a similar but diminished intensity distribution is
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Table 2
Interatomic distances d < 3.50 Å (f = frequency) of �-Mn (SHO), its
variant with local octagonal symmetry (OCT) and the structure
corresponding to the global maximum of the minimal distance map (d134).

Here, hdi and �ðdÞ denote the average distance and the standard deviation of
the distance (Å), respectively.

SHO OCT d134

Atoms d (Å) f Atoms d (Å) f Atoms d(Å) f

Mn1— Mn1— Mn1—
Mn1 2.3635 3� Mn1 2.4962 3� Mn1 2.4978 3�
Mn2 2.5761 3� Mn2 2.5017 3� Mn2 2.4978 3�
Mn2 2.6343 3� Mn2 2.6198 3� Mn2 2.6203 3�
Mn2 2.6795 3� Mn2 2.6769 3� Mn2 2.6817 3�
hdi 2.5634 hdi 2.5737 hdi 2.5744
�ðdÞ 0.1211 �ðdÞ 0.0774 �ðdÞ 0.0796

Mn2— Mn2— Mn2—
Mn1 2.5761 2� Mn2 2.4962 4� Mn2 2.4978 4�
Mn1 2.6343 2� Mn1 2.5017 2� Mn1 2.4978 2�
Mn2 2.6459 4� Mn1 2.6198 2� Mn1 2.6203 2�
Mn2 2.6723 2� Mn1 2.6769 2� Mn1 2.6817 2�
Mn1 2.6795 2� Mn2 3.0662 2� Mn2 3.0618 2�
Mn2 3.2707 2� Mn2 3.4176 2� Mn2 3.4157 2�
hdi 2.7321 hdi 2.7535 hdi 2.7533
�ðdÞ 0.2221 �ðdÞ 0.3291 �ðdÞ 0.3279

Figure 3
(a) Map of the minimal interatomic distance dmin for generalized �-Mn
structures. Long (short) minimal distances dmin are highlighted in blue
(red). In addition some intermediate contour lines are highlighted (in
steps of 0.1 Å). The location of the SHO and OCT models, in terms of
their structural parameters, is marked by a plus sign + (within the map)
and additional, unlabelled ticks (on the axes). Note that the global
maximum of the map coincides with the marker for the OCT structure
within the visual resolution of the picture. Note also that the colour code
was chosen such that favourable values corresponding to larger minimal
distances appear in blue, analogous to favourable values of the
discrepancy map corresponding to smaller star discrepancies; (b) minimal
distance map as in (a), now showing the five distinct regions according to
the distance formulae of xA1 in the Appendix; (c) tetrahelix description
of the OCT structure variant of �-Mn (shortest distances Mn1—Mn1: red,
Mn2—Mn2: blue).



seen in the corresponding section hk0 (OCT). In a similar

manner, this holds true for the higher-order sections hk1 and

hk2. In fact, the hk1 sections exhibit a relative inversion of the

intensities for the strongest reflections, 301$ 311, whereas

the contributions of 221 remain nearly constant. The differ-

ence is even more pronounced for the section hk2, in which

both 202 and 222 gain nearly as much intensity as 212, thereby

destroying the pseudo-octagonal appearance of the diffraction

pattern. Thus, although the local octagonal symmetry prevails

in real space for the OCT structure it seems to be the opposite

case in reciprocal space. However, a more uniform spatial

distribution of atoms in real space should result in a more

uniform intensity distribution for the reflections in reciprocal

space, insofar as the strongest intensities Ihkl mirror the reti-

cular density of atoms located on or nearby the corresponding

net planes hkl in a crystal. The pseudo-octagonal intensity

distribution observed for the SHO structure, on the other

hand, emphasizes the presence of a corresponding long-range

orientational order rather than the occurrence of a local

symmetry of the same kind. Also a quasiperiodic Ammann–

Beenker tiling of octagonal symmetry exhibits only a singular

point for which the global and local symmetry coincide,

however, an infinitude of points adheres to the long-range

orientational order, which therefore represents a more char-

acteristic feature of a quasicrystal than the appearance of a

certain local symmetry alone.

A similar behaviour was found in extended structural

models of the octagonal quasicrystal, in which the cubic �-Mn

together with a rhombohedral structure – upon projection

along the octagonal axis – forms the square and rhombic tiles

of an octagonal Ammann–Beenker tiling. The more regular

these structure models are made in real space, in terms of the

‘octagonality’ of their local atomic decoration, the more

uniform appears their intensity distribution in dual space,

whereas deviations from the octagonal pseudosymmetry result

in an increased ‘spikiness’ of the intensity distribution (see Fig.

8 in paper by Elenius et al., 2009).

Finally, the question may arise, whether the OCT structure

represents a chemically meaningful entity? It is natural to

expect that the shortest Mn—Mn distances in general contri-

bute the most to any directional chemical bonding and thus

are decisive with respect to the thermodynamical stability of

the structure. The pronounced difference of the shortest

Mn1—Mn1 (2.3635 Å) and Mn2—Mn2 (2.6459 Å) distances

in the SHO structure reflects the chemical difference of the

Mn1 and Mn2 sites, which are distinguishable by their

magnetic properties as well. Whereas the Mn1 atoms are

considered to be essentially nonmagnetic, gaining a

comparatively small, yet significant, magnetic moment only

upon lattice expansion, the magnetism of the Mn2 atoms and

their interactions predominate the cooperative behaviour

(Hafner & Hobbs, 2003; Paddison et al., 2013). To this effect

�-Mn can be considered to be a ‘binary’ compound constituted

by a single element yet not the same chemical species! Upon

changing to the OCT structure the harmonization of both the

shortest Mn1—Mn1 and Mn2—Mn2 distances (2.4962 Å)

diminishes this subtle difference with �-Mn ‘becoming a unary

compound’ again. As a consequence, the OCT structure

should favour, in every conceivable manner, identical atomic

species.

And indeed, although the OCT structure may not exist on

its own, it does exist as a partial structure, namely the iodine-

partial structure of the solid electrolytes MAg4I5, with M =

K(Rb,Cs), NH4,Rb (Geller, 1967; Bradley & Greene, 1967).

Here, both the M and I sites are fully ordered, thereby forming

a stuffed variant of �-Mn, with the I sites, in particular,

constituting an OCT-type �-Mn partial structure. The struc-

tural parameters for the Rb compound refine to x = 0.0307 (2)

and y = 0.1773 (1) (Hull et al., 2002), in good agreement with

the ideal ones expected for the OCT structure. Since the

chemical bonding in these compounds is predominantly ionic,

it seems pointless to think of any chemical distinguishability

regarding the iodine atoms occupying the distinct Wyckoff

sites 8c and 12d, in accordance with the aforementioned

arguments. In addition, the OCT structure facilitates the

distribution of the Ag ions over their potential interstitial sites
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Figure 4
Comparison of the reciprocal sections hk0, hk1 and hk2 (calculated for
2�max = 66
 and Mo K�1 radiation) of �-Mn (SHO) and its variant with
local octagonal symmetry (OCT).



(see Chang et al., 2008 for a comprehensive discussion of the

geometrical features of RbAg4I5).

3. Conclusion

Introducing the novel concept of geometrical discrepancy

maps of a crystal structure in a suitably chosen structural

parameter space, we were able to derive a low-discrepancy

cubic variant of the �-Mn structure which emphasizes the

latter’s approximant character with respect to axial quasi-

crystals of octagonal symmetry. Moreover, the structure found

that way is almost optimal both in terms of globally mini-

mizing the star discrepancy D� as well as globally maximizing

the minimal distance dmin. An actual realisation is found in the

iodine-partial structure of the solid electrolytes MAg4I5 [M =

K(Rb,Cs), NH4,Rb]. Notably, the geometrical discrepancy

map seems to combine some predictive as well as discrimi-

natory power which the minimal distance map is lacking, and

therefore may be suited for a wide range of structural chem-

istry motivated search and decision problems.

APPENDIX A
Details of the calculations

A1. Calculation of the distance map

The minimal distance map for generalized �-Mn structures,

see Fig. 3(a), was calculated taking into account the full 540 �

540 distance matrix D ¼ fdijg of 145 530 distinct distance

relations within the interval ½�1; 2Þ3 (a unit cell together with

its 26 adjacent cells, comprising 20 atoms each, in order to

maintain periodic boundary conditions), where dij is the usual

Euclidean distance. The cubic lattice parameter was set to a =

6.315 Å, as for �-Mn (SHO), and a cutoff of 3.00 Å was

introduced prior to a search for the minimal distance dmin,

which was calculated within the combined intervals of

0 � x< 1=8 and 1=8 � y< 1=4 with an increment of � = 0.001.

Within the given parameter range there are five distinct

regions, designated 1 to 5 in Fig. 3(b), in which dmin follows a

given coordinate dependency (the subscript denoting the

corresponding region):

d1ðxÞ ¼ a½4x2 � xþ ð3=16Þ�1=2;

d2ðyÞ ¼ a½6y2 � ð9=2Þyþ ð27=32Þ�1=2;

d3ðx; yÞ ¼ a½3x2 þ ð3=4Þxþ 2y2 � ð3=2Þyþ ð21=64Þ�1=2;

d4ðyÞ ¼ a½2y2 þ ð3=32Þ�1=2;

d5ðx; yÞ ¼ a½3x2 � ð3=4Þx� 4xyþ 2y2 þ ð1=2Þyþ ð5=64Þ�1=2:

Here, the minimal distance is defined between atoms of the

sites Mn1—Mn1 (region 1), Mn2—Mn2 (regions 2 and 4) and

Mn1—Mn2 (regions 3 and 5), respectively. This is in accor-

dance with the observed functional dependency on either x

(Mn1—Mn1), y (Mn2—Mn2) or both x and y (Mn1—Mn2).

Simultaneously solving for two of the above distance

formulae representing adjacent regions yields the equations

for the (projected) borderlines:

y12ðxÞj
0:125
0:05445 ¼ ð1=24Þ½9�

ffiffiffi
6
p
ð64x2

� 16xþ 3Þ1=2
�;

y23ðxÞj
0:05445
0 ¼ ð1=16Þ½6�

ffiffiffi
3
p
ð64x2

þ 16xþ 1Þ1=2
�;

y13ðxÞj
0:05445
0:03633 ¼ ð1=16Þ½6�

ffiffiffi
2
p
ð64x2 � 112xþ 9Þ1=2

�;

y34ðxÞj
0:03633
0 ¼ ð1=32Þð64x2

þ 16xþ 5Þ;

y14ðxÞj
0:05261
0:03633 ¼ ð1=8Þð128x2 � 32xþ 3Þ1=2;

y45ðxÞj
0:05261
0 ¼ ð192x2

� 48x� 1Þ
�
ð256x� 32Þ;

y15ðxÞj
0:125
0:05261 ¼ ð1=16Þ½�2þ 16xþ

ffiffiffi
6
p
ð64x2 � 16xþ 3Þ1=2

�;

where ðxÞjmax
min denotes the parameter range of x, for which the

boundaries are defined.

Simultaneously solving for three of the above distance

formulae representing pairwise adjacent regions yields the

coordinates for the triple junctions d123, d145 and d134 of these

regions (as listed in Table 1), which naturally mark excep-

tional points of the map.

A2. Calculation of the discrepancy map

The (exact) star discrepancy D� was calculated according to

an algorithm of Dobkin et al. (1996) implemented into C code

by Gnewuch et al. (2012) and Doerr et al. (2014), and further

adapted for its application within a structural chemistry

context by one of the authors (PK). The star discrepancy map

(see Fig. 1) was calculated within the combined intervals of

0 � x< 1=8 and 1=8 � y< 1=4 with an increment of � =

0.0001.

A3. Calculation of the ideal parameters (in P4132)

A3.1. Method A. One begins with a two-dimensional

projection along [001] of the eight atoms around the fourfold

screw axis located at ð3=4; 1=2; zÞ and their resulting general

coordinates as given by the Wyckoff sites 8c (4�) and 12d

(4�). Then there exist two distinct sets of alternating nearest-

neighbour distances

di;i�1 ¼ ½2x2
� ð1=4Þxþ 2xyþ y2

� ð1=2Þyþ ð5=64Þ�1=2;

di;iþ1 ¼ ½2x2
� ð1=4Þx� 2xyþ y2

þ ð1=64Þ�1=2;

and another two distinct sets of alternating next-nearest-

neighbour distances

di�1;iþ1 ¼ ½4x2
� xþ ð1=8Þ�1=2;

di;iþ2 ¼ ½2y2
þ ð1=32Þ�1=2:

Equating the distances di;i�1 ¼ di;iþ1 and di�1;iþ1 ¼ di;iþ2,

which have to/must not share a common index (i.e. site), and

solving for y yields equations (3) and (4), respectively. The

intersection of both functions yðxÞ gives the ideal parameters.

A3.2. Method B (due to Matthias Conrad). One begins with

a two-dimensional projection along [001] of the eight atoms

around the fourfold screw axis located at ð1=4; 0; zÞ and the

resulting point ðx1; y1Þ corresponding to the Mn1 site. An

adjacent Mn2 site ðx2; y2Þ within an octagon assumed to be

regular is constructed via a rotation of an angle ��=4 (i.e.

clockwise) about the point ð1=4; 0Þ. This results in the

following conditional equation:
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�
x2

y2

�
¼

1ffiffiffi
2
p

�
1 1

1 1

�	�
x1

y1

�
�

�
1=4

0

�

þ

�
1=4

0

�
;

taking into account an intermediate shift of the rotation point

back and forth the origin. Given the restrictions of the space

group with respect to the coordinates, i.e. y1 ¼ x1 (8c) and

x2 ¼ 1=8 (12d), respectively, yields the ideal parameters. With

the ideal parameters thus derived, the shift in the z parameters

of Mn1 and Mn2 becomes

z2 � z1 ¼

�
1

4
ffiffiffi
2
p þ

1

4

�
�

2�
ffiffiffi
2
p

16
¼

2þ 3
ffiffiffi
2
p

16
� 0:390;

which only slightly fails to account for the corresponding

distance related to an eightfold screw axis (incompatible with

cubic symmetry), i.e. ð85Þ
7 with z2 � z1 ¼ 3=8 ¼ 0:375.

It is a pleasure to thank Matthias Conrad and Marek Petrik

for their comments on the manuscript, as well as Magnus

Wahlström for sharing his original exact star discrepancy code

with the scientific community.
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